Контрольные работы, курсовые, дипломные, рефераты, а также подготовка докладов, чертежей, лабораторных работ, презентаций и еще много всего. Недорого и быстро.
Главная страница | Шпаргалки |
Решение задач | Эксклюзивные фото по химии |
Сочинения (более 4000) | Юмор из жизни учащихся |
Вернуться в раздел "Учебные материалы" |
Математика. Алгебра. Геометрия. Тригонометрия
АЛГЕБРА: Графики функций
5.5. Свойства степенной функции с целым показателем и ее график
Функция вида y = f(x) = xn , где хО R - переменная, n О Z -постоянное число, называется степенной функцией с целым показателем.
n = 1 - это частный случай линейной функции, а n = 2 - частный случай квадратичной функции. При n = 0 "х № 0 f(x) = 1, f(0) не определено.
- Случай n і 3.
- D [xn] - (-Ґ, +Ґ ), так как "x О R определено однозначно число xn, как произведение n чисел, каждое из которых равно x.
- Е [xn] - (-Ґ, +Ґ ), если n = 2k -1, k і 2, kО N ;
Е
[xn] - [0, +Ґ ), если n = 2k, k і 2, kО N ;Доказательство.
" nО N ; " y0 і 0 существует единственное х0 і 0 :,
;
в то же время при
n = 2k из свойств операции умножения действительных чисел следует, что "x О R xn = x2k і 0;При
n = 2k -1 " y0 < 0 существует
.
III. Если
n = 2k, то существует

IV. D[xn] - R симметрична относительно точки х0 = 0. Если n = 2k, то"x О R, (-х)n=(-1)nЧ хn = хn, то есть "x О R, f(-х) = f(х), следовательно функция четная.
Если же n = 2k -1, то"x О R, (-х)n=(-1)nЧ хn = -хn, то есть "x О R, f(-х) = -f(х), следовательно функция нечетная.
V. Функция y = xn "n О N, не периодическая, так как она строго монотонна на бесконечных промежутках. (см. далее п. VII).
VI. Из свойств операции умножения действительных чисел вытекает: если n = 2k, то f(x) = xn > 0 на интервалах (-Ґ, 0) и (0, +Ґ ); а если n = 2k - 1, то f(x) = xn > 0 на интервалах (0, +Ґ ) и f(x) = xn < 0 на интервалах (-Ґ, 0). Так как "n О N, при x = 0 xn = 0, то х0 = 0 - единственный нуль функции.
VII. Пусть x1, x2 - произвольные числа из R, удовлетворяющие неравенствам 0 Ј x1 < x2, тогда "n О N в силу свойств числовых неравенств вытекает x1n < x2n, следовательно функция y = xn возрастает на промежутке [0, +Ґ ).
Пусть теперь
x1, x2 - произвольные числа из R, удовлетворяющие неравенствам -x1 < -x2 Ј 0 Ы 0 Ј x2 < x1, тогда при n = 2k в силу четности функции и свойств неравенств (-x1)n = -x1n < -x2n = (-x2)n, следовательно функция y = xn убывает на промежутке (-Ґ, 0];При
n = 2k - 1 в силу нечетности функции и свойств неравенств (-x1)n = -x1n < -x2n = (-x2)n, следовательно функция y = xn возрастает на промежутке (-Ґ, 0], а так как она возрастает и на промежутке и на промежутке [0, +Ґ ), то она будет возрастающей на всей числовой прямой (-Ґ, +Ґ ).VIII. Графики функций
О(0; 0) - точка пересечения графика функции
y = xn с осями Ох и Оу.
- Случай n Ј -1.
Положим n = -т, где уже т
О N.I. D[xn] = D[x-т]- (-Ґ, 0) И (0, +Ґ ), так как "х № 0 xт № 0, а потомуопределено, но при х = 0 xт = 0, поэтому xn =1/ xт не определено.
II. Е[xn] = Е[x-т]- (0, +Ґ ), если n = -2k, kО N ;
Е
[xn] = Е[x-т]- (-Ґ, 0) И (0, +Ґ ), если n = -(2k - 1), kО N. Этот случай доказывается аналогично случаю натурального значения n, отметим только, что так как "х № 0 1/xт № 0, а потому y0 = 0 П Е[xn].III. Таким же образом, как и в случае натурального n из пункта II. вытекает несуществование при n = -(2k - 1) и
при любом n Ј -1. Подробнее остановимся на доказательстве несуществования
при n = -2k. Если предположить его существование, то он будет равен некоторому числу т > 0. А согласно результатам пункта II, в частности для числа т/2 существует х0'і 0: f(х0') = m/2 = < m, пришли к противоречию.
IV., V. Эти случаи полностью аналогичны случаю nО N.
VI. Из п. II вытекает, что нулей функция не имеет, а интервалы знакопостоянства у нее такие же (в зависимости от четности и нечетности
n), что и в случаи натурального показателя n.VII. Функция
y = xn убывает на промежутке (0, +Ґ ) при любом n Ј -1, а также она убывает на промежутке (-Ґ, 0) при n = -(2k - 1) и возрастает на этом промежутке при n = -2k.Для доказательства фиксируем произвольные 0 <
x1 < x2, так как при этом 0 < x1m < x2m, то в силу свойств числовых неравенств
Далее, рассматривая произвольные числа
x1, x2, удовлетворяющие неравенствам -x1 < -x2 Ј 0 Ы 0 Ј x2 < x1, совершенно аналогично случаю натурального показателя n на основе четности или нечетности функции y = xn и свойств числовых неравенств доказывается, что (-x1)n < (-x2)n при n = -2k и (-x1)n > (-x2)n при n = -(2k - 1).Замечание
. Необходимо отметить, что при n = -(2k - 1) убывания функции y = xn на объединении промежутков (-Ґ, 0) И (0, +Ґ ) нет! Если, к примеру, x1 < 0 < x2, то есть x1 < x2, то также x1n < 0 < x2n, то есть x1n < x2n.VIII. Графики функций
Отметим, что так как число 0 не принадлежит ни к области определения, ни к области значений функции
y = xn в рассматриваемом случае, графики этих функций не имеют точек пересечения с осями координат. При n Ј -1Если
n = -2k, то при х ® ± Ґ (х ® 0 ± 0) f(x) ® 0 + 0 (f(x) ® + Ґ ).Если
n = -(2k - 1), то при х ® ± Ґ (х ® 0 ± 0) f(x) ® 0 ± 0 (f(x) ® ± Ґ ).Замечание
. По определению кривые, являющиеся графиками функций y = xn при n = 2 и n = -1, называются соответственно параболой и гиперболой.
|
Вы находитесь на сайте Xenoid v2.0: |
|
Copyright © 2005-2013 Xenoid v2.0
Использование материалов сайта возможно при условии указания активной ссылки
Химия: решение задач