Контрольные работы, курсовые, дипломные, рефераты, а также подготовка докладов, чертежей, лабораторных работ, презентаций и еще много всего. Недорого и быстро.

Узнать больше...

Главная страница Шпаргалки
Решение задач Эксклюзивные фото по химии
Сочинения (более 4000) Юмор из жизни учащихся
Вернуться в раздел "Учебные материалы"

Концепции современного естествознания (КСЕ)

Методология естествознания

Если понять связи между процессами естествознания, то можно построить картину современного естествознания. Естествознание прошло несколько стадий: сбор естественнонаучной информации, затем её анализ. Стадия анализа уже некоторая составляющая методологии. Наука с ее развитием все более усложняется в методах.

    Общеметодологические проблемы естествознания:
  • Раскрытие всеобщей связи явлений природы (живой и неживой), установление сущности жизни, ее происхождение, физико-химические основы наследственности.
  • Раскрытие сущности явлений как в глубь материи (область элементарных частиц), так и в сторону макро (околоземных) и мега (далее) объектов.
  • Раскрытие реальных противоречий объектов природы, таких как корпускулярно-волновой дуализм (кто бы нам, юристам, сказал, что это такое?), частица и античастица, взаимоотношение динамических и статистических закономерностей (динамические законы отражают жесткую детерминированную связь между объектами, эта связь однозначна и предсказуема, если мы приложили силу к определенной точке, то мы знаем в какой момент и в каком месте она будет находиться); статистические закономерности (иногда их называют вероятностными законами, используют для описания анализа в системах, где очень много компонентов, где невозможно все точно предсказать), случайности и необходимости.
  • Выявление сущности качественного преобразования в природе (в естествознании важен не сам переход, а важны условия перехода в реальности и природа скачка, т.е. механизм), выявление соотношения между материей и сознанием. На современном этапе необходимы совершенно новые подходы.
Методология естествознания ориентирована на решение главной проблемы, проблемы управляемого развития научного знания.

Метод - это совокупность приемов и операций практического и теоретического освоения действительности. Метод вооружает исследователя системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владением методом означает знание того, каким образом, в какой последовательности совершать те или иные действия. Методология это область знания, занимающаяся изучением методов, оценкой их эффективности, сущности и применимости, методы научного познания принято подразделять по степени их общности, т.е. широте применимости в процессе научного исследования:
  • Первая группа это всеобщие методы: диалектический и метафизический, еще их называют общефилософскими методами.
  • Вторую группу методов составляют общенаучные методы, которые используются в самых различных областях наук, т.е. имеют широкий спектр междисциплинарного применения.
  • Третья группа методов: частнонаучные, которые используются только в рамках исследования какой-то конкретной науки или даже конкретного явления.
Эта трехступенчатая структура сообразуется с понятием системы. Эти методы по нисходящей, определяют разработку исследования от общего к частному, с использованием множества методов. Частнонаучные методы обычно вырабатываются применительно к конкретному исследованию, обычно в момент научной революции.

Существует два уровня познания, это эмпирический и теоретический. На эмпирическом уровне используют наблюдение, эксперимент, измерение. На теоретическом уровне используют идеализацию и формализацию. А метод моделирования можно использовать на обоих уровнях. В модели надо учесть множество факторов и оптимизировать их. Моделирование чаще используется на теоретическом уровне, когда имеется уже много фактов, их надо обобщить, квалифицировать прогнозировать. Математические методы моделирования проникли во все науки.
    Элементы структуры научного знания:
  1. Фактический материал или твердо установленный факт.
  2. Это результаты обобщения фактического материала выраженные в понятиях.
  3. Научные предположения (гипотезы).
  4. Нормы научного знания - это совокупность определенных, концептуальных и методологических установок, свойственных науке на каждом конкретно историческом этапе ее развития. Основной функцией является организация и регулирование процесса исследования. Выявление наиболее эффективных способов и путей решения проблемы. Смена этапов в науке приводит к изменению норм научного познания.
  5. Законы, принципы, теории.
  6. Стиль мышления, характеризуется двумя подходами (в основном) к рассмотрению объектов. Первое, это представление о простых динамических системах (это первый исторический тип мышления) и второе, это представление о сложных процессах, о самоорганизующихся системах.
Цель методологии - создать новые способы и методы для решения проблем современной науки.

Проблема управляемого развития:

Признаки, отвечающие воззрениям классического естествознания (а)Признаки современного естествознания (б)
Признаки а и б направлены на естественнонаучную картину мира (ЕНКМ)
ЕНКМ представляет жесткую систему, т.е. с четкими причинно-следственными связями. Процессы развития представлены как лавинообразный рост, в основе которого лежит поступательное движение без альтернатив.Динамическая открытая система ЕНКМ. Процессы развития - "режим с обострением" и множественность путей развития.


С переходом на современном этапе естествознания к изучению больших и сложноорганизованных объектов (систем) прежние методы классического естествознания оказались не эффективными. Иначе, мир объектов предстал значительно более многообразным и сложным, чем ожидалось и те методы, которые позволяли изучить часть объектов и могли дать картину в статике, на современном этапе уже не могут быть применены. Сейчас мир понимается, как динамическая система, где компоненты взаимодействуют и приобретают новые качества.

Для изучения такой системы выработан системный подход (системное исследование объектов). Основатель теории систем Берталанфи развил первую систему, это австрийский биолог теоретик, и системный подход стал впервые применяться в биологии. Основная задача общей теории систем состоит в том, чтобы найти совокупность законов, объясняющих поведение функционирование и развитие всего класса объектов как целого. Это направлено на построение целостной теоретической модели классов объектов. В классической науке бралась система, в ней были какие-то компоненты (здесь аналогия механики, все сводилось к движению внутри системы, все системы рассматривались как закрытые системы). Сегодня можно поставить такой вопрос, существуют ли изолированные системы в принципе, ответ отрицательный. Естественными системами в природе являются открытые термодинамические системы, которые обмениваются с окружающей средой энергией, веществом и информацией. Особенности системного подхода:
  • При исследовании объекта как системы, компоненты этой системы рассматриваются не сами по себе отдельно, а с учетом их места в структуре целого.
  • Даже если компоненты системы одного класса, то при системном анализе они рассматриваются как наделенные разными свойствами, параметрами и функциями, но которые объединены общей программой управления.
  • При исследовании систем обязательно предполагается учет внешних условий их существования. Для высокоорганизованных систем (органических) оказывается недостаточным причинное описание их поведения. Это означает, что причинно-следственная связь является очень жесткой (в смысле однозначной), согласно таким представлениям считалось, что можно спрогнозировать весь процесс событий, это по классической школе. И случайность, и нелогичность рассматривались как некие недоразумения. Случайностям не уделялось достаточно внимания. Вместе с тем, когда ученые стали рассматривать поведение сложных высокоорганизованных систем (биологические, социальные, технические), то выявилось, что строгой предопределенности (однозначности прогнозирования) нет. Кризиса в науке в связи с этим не случилось, т.к. открытия в области естественных наук выявили общие закономерности конкретных систем, то эти закономерности стало возможным применить и к самой науке.
Эволюционно-синергетическая парадигма, создание такого подхода стало возможным на базе нового научного направления - синергетика. Синергетика - это наука о самоорганизации систем состоящих из множества подсистем самой различной природы. Тем самым подчеркивается универсальность этого методологического подхода, т.е. он применим в различных областях науки, в основе лежит понимание того, что в основе функциональных систем лежат сложные динамические системы самоорганизации. Другое определение синергетики - кооперация, сотрудничество, взаимодействие различных элементов систем.

Движение развития науки, поднятие на новый качественный уровень связывали с НТР. Если мы говорим о развитии сложных систем, то всегда имеется точка бифуркации (к этому моменту подходит любая сложная система на своём развитии). От этой точки развитие может пойти вниз, а может вверх. Применительно к сложным системам в точке бифуркации необходимо применить немного сил, чтобы развитие пошло вверх.

     РАЗВИТИЕ     
     /     \      
  Хаос   Порядок  

Если раньше полагали, что развитие это только движение, и хаос воспринимали как жуткую бездну и не понимали, что есть взаимосвязь между хаосом и порядком. В результате скачка система приобретает новые свойства за счет внутренней упорядоченности (организации). Если говорить о твердых телах - это упорядоченность в структуре (кристаллическая решетка), таким образом, в природе мы тоже видим упорядоченность. Развитие порядка происходит через хаос. Выбор определяется и условиями внешнего воздействия на систему. Из точки бифуркации возможно два пути: переход к более высокой организации или разрушение системы (считай деградация). В науках есть критические точки развития, но есть нюанс, что в точке есть несколько путей выбора. Главный принцип в том, что если мы понимаем как развивается сложная система, не надо ей мешать, а при необходимости лишь слегка направить систему в нужном направлении. Положения из синергетического подхода:
  • Сложно организованным системам нельзя навязывать пути их развития. Наоборот следует понять, каким образом способствовать их собственным тенденциям развития. Следовательно, необходимо попытаться вывести на их собственные более эффективные пути развития.
  • Этот подход позволяет понять роль хаоса в качестве новой организации систем.
  • Позволяет понять и использовать моменты неустойчивости системы. Точка бифуркации как раз момент неустойчивости, где малое усилие порождает большие последствия. В моменты неустойчивости могут происходить изменения на более высоких уровнях организации материи.
  • Синергетика свидетельствует о том, что для сложных систем существует несколько альтернативных путей развития. Это положение позволяет сделать вывод, что в принципе существуют такие пути развития человека и природы, которые могли бы устроит человека и не наносить вреда природе. Для нахождения таких путей мы должны понять закономерности развития сложных систем.
  • Синергетика дает знания о том, как оперировать сложными системами.
  • Синергетика позволяет раскрыть закономерности протекания быстрых, нелинейных процессов, которые лежат в основе качественных преобразований системы.
С помощью каких законов можно описать объективные закономерности: с помощью динамических законов или статистических? Здесь возникает проблема соотношения законов. Другими словами речь идет: во-первых, о применимости законов, во-вторых, о соотношении законов, какие являются главными, а какие специальными. В рамках данной проблемы (соотношение законов) возникли два философских направления:
  1. Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений.
  2. Индетерминизм - учение, отрицающее какую-либо объективную причинную обусловленность явлений.
Соотносительно этим направлениям развивались физические теории.

Динамические законы. Первая и такая теория, которая соотносилась с детерминизмом - динамическая. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи неких физических величин выраженных количественно. Исторически первой и простой явилась динамическая механика Ньютона. Лапласу принадлежит абсолютизация динамических закономерностей. Согласно его принципу все явления в мире детерминированы, т.е. предопределены необходимостью. А случайным явлениям и событиям, как объективной категории, не отводится никакого места. На определенной стадии развития таких законов возник вопрос о том, что динамические законы не единственные законы, что они не являются универсальными. Исторически это связано с изучением более сложных систем, а также со стремлением ученых проникнуть в глубь материи.

Статистические законы. Наряду с динамическими законами действуют законы иного рода, предсказания которых являются не определенными, а вероятностными. Но детерминизм не уходит из науки, а вышеназванный подход называется вероятностным детерминизмом - вероятностное прогнозирование объективных закономерностей на основе вероятностных законов. Такие законы получили название статистических. Это значит, что предсказать событие можно не однозначно, а с определенной степенью вероятности. Здесь оперируют срединными величинами и усредненными значениями. Вероятностными эти законы называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются однозначными. Т.к. сама информация носит статистический характер, эти законы называют статистическими. Логика выявления этих законов принадлежит Максвеллу. Вероятность имеет объективный характер, это означает, что на фоне множества событий обнаруживается определенная закономерность, выражаемая определённым числом. <

 

 

Вы находитесь на сайте Xenoid v2.0:
если вам нужно быстро, подробно и недорого
решить контрольную - обращайтесь. Возможны консультации
онлайн. См. раздел "Решение задач".

 

 

 

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки
Химия: решение задач