Контрольные работы, курсовые, дипломные, рефераты, а также подготовка докладов, чертежей, лабораторных работ, презентаций и еще много всего. Недорого и быстро.

Узнать больше...

Главная страница Шпаргалки
Решение задач Эксклюзивные фото по химии
Сочинения (более 4000) Юмор из жизни учащихся
Вернуться в раздел "Учебные материалы"

Физика

Кинематика теории относительности. Энергия и импульс

Преобразования Лоренца. Формула, описывающая распространение фронта сферической световой волны, может быть переписана в виде:



Введем обозначение:



Величина s2 называется интервалом. Тогда уравнение распространения световой волны примет вид: s2 = 0.

Из геометрических соображений очевидно, что в областях абсолютного прошлого и абсолютного будущего (иначе их называют времениподобными областями) s2 > 0, а в пространственноподобной области s2 < 0. Поскольку скорость света не зависит от выбора ИСО, то разделение всех событий по отношению к данному на те, которые лежат во времениподобной или пространственноподобной областях, не зависит от системы отсчета. Другими словами, интервал s инвариантен относительно перехода из одной ИСО в другую. Согласно принципу относительности, уравнение s2 = 0, выражающее физический закон распространения света, обязано иметь один и тот же вид во всех ИСО.

Легко убедиться простой подстановкой, что величина s2 не сохраняет своего вида при преобразованиях Галилея. Отсюда мы приходим к выводу о необходимости существования иных преобразований координат и времени при переходе от одной ИСО к другой. При этом, учитывая относительный характер одновременности, уже нельзя считать t' = t, т.е. считать время абсолютным, идущим независимо от наблюдателя, и вообще отделить время от пространства, как это можно было сделать в ньютоновской механике.

Преобразования координат и времени события, не меняющие величины интервала s2, носят название преобразований Лоренца. Их вывод выходит за рамки школьной программы. Поэтому ограничимся проверкой того, что выписанные ниже преобразования действительно сохраняют величину интервала.

Преобразования Лоренца имеют вид:

(2.1)

Здесь v - скорость движения одной ИСО относительно другой, величина

Лоренц-фактор

носит название лоренц-фактора и, как легко видеть, может меняться от 1 до Ґ при изменении скорости v от 0 до c.

Преобразования Лоренца удобно переписать, введя вместо времени t другую величину: x0 = ct, имеющую размерность длины, и обозначив x = x1, y = x2, z = x3. Тогда, умножая четвертое равенство на c справа и слева и вводя обозначения



получим:

(2.2)

Теперь нетрудно проверить инвариантность интервала, который в новых обозначениях принимает вид:



Имеем:



что и требовалось доказать.

Часы и линейки.
Наиболее парадоксальными непосредственными следствиями преобразований Лоренца являются утверждения, что наблюдатели в двух разных ИСО будут получать разные результаты при измерении длины какого-то стержня или интервала времени между двумя событиями, произошедшими в одном месте.

1. Сокращение размеров. Пусть стержень расположен вдоль оси x' системы отсчета К' и покоится в этой системе. Его длина l' = x'2 - x'1 фиксируется наблюдателем в этой системе. Переходя в неподвижную систему К, можем записать выражения для координат конца и начала стержня, измеренных в один и тот же момент времени по часам неподвижного наблюдателя:



Отсюда:



Эту формулу обычно записывают в виде:

(2.3)

Так как g > 1, то это означает, что длина стержня l в "неподвижной" системе отсчета оказывается меньше длины этого же стержня l' в движущейся системе (лоренцовское сокращение длины).

2. Замедление темпа хода времени. Пусть два события происходят в одном и том же месте в системе К' и интервал времени между этими событиями по часам наблюдателя, покоящегося в этой системе, равен Dt = t'2 - t'1.

Принято называть время t, измеренное по часам покоящегося наблюдателя, собственным временем. Мы хотим найти связь между собственным временем и временем, измеренным по часам движущегося наблюдателя. Так как



где x' - неизменная пространственная координата события, то, вычитая одно равенство из другого, находим:

(2.4)

Из этой формулы следует, что часы в системе К показывают больший интервал времени между двумя событиями, чем часы в системе К', движущейся относительно К. Иными словами, интервал собственного времени, который показывают часы, движущиеся вместе с наблюдателем, всегда меньше интервала времени, который показывают часы неподвижного наблюдателя.

Сложение скоростей. Запишем преобразования Лоренца для изменения координат тела Dx, Dy, Dz за промежуток времени Dt. Имеем:

(2.5)

Здесь V - направленная вдоль оси x скорость движения одной системы относительно другой.

Скорость тела в лабораторной системе v = Dr/Dt, а скорость этого же тела в системе, движущейся вдоль оси x со скоростью V относительно лабораторной системы, равна v' = Dr'/Dt'. Поэтому

(2.6)

В предельном случае, когда все скорости много меньше скорости света, V << c и v' << c (нерелятивистский случай), можно пренебречь в знаменателе вторым слагаемым. Тогда приходим к закону сложения скоростей классической механики: v = v' + V.

В противоположном, релятивистском случае (скорости близки к скорости света) легко убедиться, что, вопреки наивному представлению, при сложении скоростей невозможно получить скорость, превышающую скорость света в вакууме. Пусть, например, все скорости направлены вдоль оси x и v' = c, тогда видно, что и v = c.

Соотношение Эйнштейна. Главной прикладной формулой ЧТО является установленное А. Эйнштейном соотношение между энергией E, импульсом p и массой m свободно движущейся частицы:



Эта формула заменяет ньютоновскую формулу, связывающую кинетическую энергию с импульсом:



Из нее следует, что при p = 0

(2.7)

Смысл этой знаменитой формулы в том, что массивная частица в сопутствующей системе отсчета (т.е. в ИСО, движущейся вместе с частицей, так что относительно нее частица покоится) обладает определенной энергией покоя Е0, однозначно связанной с массой этой частицы.

 

Услуги по /doma-iz-otsilindrovannogo-brevna строительству домов из оцилиндрованного бревна.

 

Вы находитесь на сайте Xenoid v2.0:
если вам нужно быстро, подробно и недорого
решить контрольную - обращайтесь. Возможны консультации
онлайн. См. раздел "Решение задач".

 

 

 

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки
Химия: решение задач